Myb-domain protein Teb1 controls histone levels and centromere assembly in fission yeast.

نویسندگان

  • Luis P Valente
  • Pierre-Marie Dehé
  • Michael Klutstein
  • Sofia Aligianni
  • Stephen Watt
  • Jürg Bähler
  • Julia Promisel Cooper
چکیده

The TTAGGG motif is common to two seemingly unrelated dimensions of chromatin function-the vertebrate telomere repeat and the promoter regions of many Schizosaccharomyces pombe genes, including all of those encoding canonical histones. The essential S. pombe protein Teb1 contains two Myb-like DNA binding domains related to those found in telomere proteins and binds the human telomere repeat sequence TTAGGG. Here, we analyse Teb1 binding throughout the genome and the consequences of reduced Teb1 function. Chromatin immunoprecipitation (ChIP)-on-chip analysis reveals robust Teb1 binding at many promoters, notably including all of those controlling canonical histone gene expression. A hypomorphic allele, teb1-1, confers reduced binding and reduced levels of histone transcripts. Prompted by previously suggested connections between histone expression and centromere identity, we examined localization of the centromeric histone H3 variant Cnp1 and found reduced centromeric binding along with reduced centromeric silencing. These data identify Teb1 as a master regulator of histone levels and centromere identity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast.

Methylation of histone H3 at lysine 4 (H3 Lys-4) or lysine 9 (H3 Lys-9) is known to define active and silent chromosomal domains respectively from fission yeast to humans. However, in budding yeast, H3 Lys-4 methylation is also necessary for silent chromatin assembly at telomeres and ribosomal DNA. Here we demonstrate that deletion of set1, which encodes a protein containing an RNA recognition ...

متن کامل

Ectopic centromere nucleation by CENP--a in fission yeast.

The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the...

متن کامل

Plasticity of Fission Yeast CENP-A Chromatin Driven by Relative Levels of Histone H3 and H4

The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is no...

متن کامل

Histone variant H2A.Z regulates centromere silencing and chromosome segregation in fission yeast.

The incorporation of histone variant H2A.Z into nucleosomes plays essential roles in regulating chromatin structure and gene expression. A multisubunit complex containing chromatin remodeling protein Swr1 is responsible for the deposition of H2A.Z in budding yeast and mammals. Here, we show that the JmjC domain protein Msc1 is a novel component of the fission yeast Swr1 complex and is required ...

متن کامل

The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres

Centromeres of fission yeast are arranged with a central core DNA sequence flanked by repeated sequences. The centromere-associated histone H3 variant Cnp1 (SpCENP-A) binds exclusively to central core DNA, while the heterochromatin proteins and cohesins bind the surrounding outer repeats. CHD (chromo-helicase/ATPase DNA binding) chromatin remodeling factors were recently shown to affect chromat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2013